Tetrahedron Letters No. 1, pp 69 - 72, 1978. Pergamon Press. Printed in Great Britain.

THYRSIFEROL: A SQUALENE-DERIVED METABOLITE OF LAURENCIA THYRSIFERA

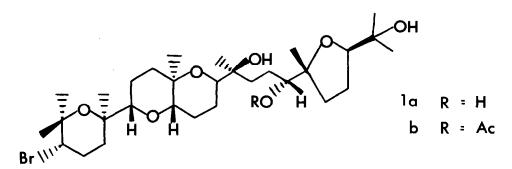
J. W. Blunt, M. P. Hartshorn, T. J. McLennan, M.H.G. Munro*, Ward T. Robinson and S. C. Yorke

Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

(Received in UK 24 October 1977; accepted for publication 11 November 1977)

Previous investigations of red algae of the genus <u>Laurencia</u> (Rhodomelaceae, Rhodophyta) have established the structures of many interesting metabolites based in the main on fatty acid, sesquiterpenoid or diterpenoid skeletons.¹ We now report the isolation and identification of a squalene-derived metabolite from a Laurencia species.

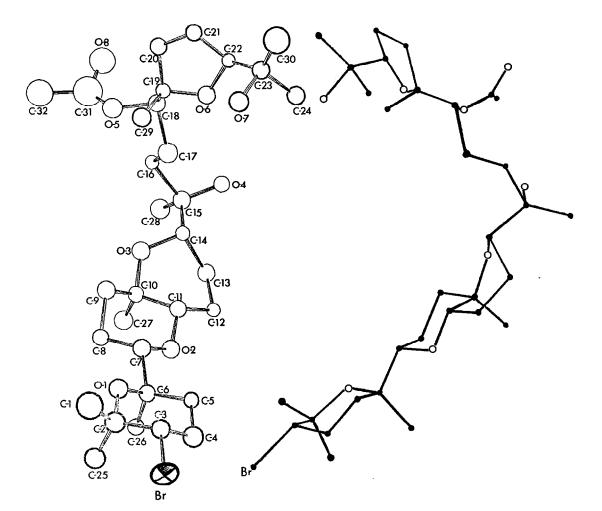
Laurencia thyrsifera (Hook) was collected from the intertidal zone at Seal Reef, Kaikoura, N.Z.² Chromatography of the methanol extract (4.5% of dry weight) on alumina gave a complex mixture of fatty acid methyl esters,³ cholesterol⁴ and the polar compound thyrsiferol (la) as a mixture with two other metabolites (ene-ynes). After acetylation⁵ of this mixture thyrsiferol (la) was isolated as its mono-acetate (lb), m.p. 104.5-106°, RD (in cyclohexane, c = .0002) $[\alpha]_{400} + 89^{\circ}, [\alpha]_{350} + 111^{\circ}, [\alpha]_{300} 220^{\circ}, [\alpha]_{225} 400^{\circ}$. The molecular formula was inferred from high resolution mass measurement of the $[M-H_20]$ doublet and the [M-HBr] peak, as the molecular ion doublet (m/e 646/648) was of low intensity. The ¹³C nmr spectrum⁷ confirmed that the acetate (lb) was highly oxygenated as eleven C-0 type resonances (δ_{13} 60-80) were discernible. The molecular formula, ¹³C offset resonance decoupling experiments and ¹³C LIS studies established that thyrsiferyl acetate (lb) was a saturated, non-carbocyclic, dihydroxy acetate with 4 ether bridges. In addition, some 8 methyl groups were resolved (excluding the acetate methyl) and these were in similar structural environments:



The structure of thyrsiferyl acetate (lb) was determined by X-ray crystallography. Preliminary photographs indicated that thyrsiferyl acetate belonged to the monoclinic crystal class and systematic absences (OkO with k odd) together with the chirality of the compound suggested that the space group was P2₁. Refined cell constants were <u>a</u> = 12.348(4) Å, <u>b</u> = 12.055(5) Å, <u>c</u> = 12.166(5) Å and β = 107.31(4)°, D_c = 1.24 g cm⁻³ and Z = 2.⁸ The best crystal available for intensity collections was of high mosaicity (0.36-0.48°) with dimensions

No. 1

of $(0.250 \times 0.075 \times 0.063) \text{mm}^3$. A total of 1931 unique reflections $(\theta \le 50^\circ)$ were collected using Ni-filtered Cu K α radiation ($\lambda = 1.5418 \text{ Å}$) with θ -2 θ scans on a Hilger and Watts four-circle automatic diffractometer. Of these reflections 1103, for which $F_0^{-2} > 3\sigma (F_0^{-2})$, were used in all structure solving calculations. Lorentz and polarisation corrections were applied, but no absorption corrections were made ($\mu = 21.53 \text{ cm}^{-1}$).


The crystal structure was determined by conventional heavy atom methods and refined using the full-matrix least-squares procedure with isotropic temperature factors for all carbon and oxygen atoms and anisotropic temperature factors for the bromine atom.⁹ The scattering factors of Cromer and Mann¹⁰ with the anomalous dispersion corrections of Cromer¹¹ for bromine were applied. Hydrogen atoms were not included in the structure factor calculations. This model was refined to conventional agreement factors R = 0.144 and $R_w = 0.182$. The centrosymmetric distribution of bromine atoms in an otherwise non-centrosymmetric array, together with the poor crystal quality, severely hindered attempts to determine the absolute configuration. The correct enantiomer has not been conclusively established but the weighted R-factor and the standard error in an observation of unit weight were marginally better for the enantiomer shown. Final position and thermal parameters are given in Table 1.¹²

The conformation of thyrsiferyl acetate in the crystal studied is shown in Fig. 1. Ring C is in a twist-boat conformation in which strong 1,3-diaxial interactions between C(27) and C(15) are avoided. The molecular packing is dominated by intermolecular H-bonding (2.80(4) $\stackrel{\circ}{A}$) between O(4) and O(6) in adjacent molecules, and there is close intra-molecular contact between O(7) and O(6) (2.82(4) $\stackrel{\circ}{A}$).

Limited biological testing¹³ of a crude sample of thyrsiferol (la) and thyrsiferyl acetate (lb) indicated that they were biologically inactive.

Acknowledgements: We wish to thank the U.G.C. for equipment and a Post-graduate Scholarship for one of us (TJM); the Zoology Department, University of Canterbury for assistance and the use of facilities at the Edward Percival Marine Research Laboratory, Kaikoura; Professor K. L. Rinehart and associates, University of Illinois for high resolution mass measurements and Dr M. J. Parsons, D.S.I.R., Lincoln for alga identification.

<u>Fig. 1</u>: Two perspective views of thyrsiferyl acetate (lb).

	x	У	z	U		×	У	z	U
Br 0(1) 0(2) 0(3) 0(5) 0(6) 0(7) 0(7) 0(7) 0(7) 0(7) 0(7) 0(7) 0(7	$\begin{array}{c} 0.2389(4)\\ 0.517(2)\\ 0.540(2)\\ 0.855(2)\\ 1.185(3)\\ 1.067(2)\\ 0.991(2)\\ 1.314(4)\\ 0.5511(5)\\ 0.441(4)\\ 0.354(3)\\ 0.282(4)\\ 0.382(3)\\ 0.467(3)\\ 0.582(4)\\ 0.572(3)\\ 0.774(4)\\ 0.725(3)\\ 0.255(4)\\ 0.572(3)\\ \end{array}$	$\begin{array}{c} 0.2500\\ 0.438(2)\\ 0.734(3)\\ 0.874(3)\\ 1.133(2)\\ 0.879(3)\\ 0.934(2)\\ 0.807(3)\\ 1.000(4)\\ 0.240(7)\\ 0.334(4)\\ 0.365(4)\\ 0.365(4)\\ 0.571(3)\\ 0.549(4)\\ 0.515(4)\\ 0.615(4)\\ 0.602(3)\\ 0.687(4)\\ 0.803(4)\\ 0$	$\begin{array}{c} 0.0263(5)\\ 0.232(2)\\ 0.249(2)\\ 0.346(2)\\ 0.204(2)\\ 0.204(2)\\ 0.218(2)\\ 0.349(4)\\ 0.186(5)\\ 0.199(4)\\ 0.080(4)\\ 0.075(4)\\ 0.080(4)\\ 0.075(4)\\ 0.080(4)\\ 0.0357(4)\\ 0.357(4)\\ 0.216(3)\\ \end{array}$	0.060(9) 0.057(9) 0.061(9) 0.07(1) 0.056(9) 0.063(9) 0.12(1) 0.11(2) 0.06(1) 0.06(1) 0.06(1) 0.07(1) 0.05(1) 0.05(1) 0.05(1) 0.06(1) 0.05(1) 0.06(1) 0.05(1) 0.06(1) 0.05(1) 0.05(1) 0.04(1)	C(13) C(14) C(15) C(16) C(17) C(20) C(21) C(22) C(22) C(23) C(24) C(24) C(25) C(26) C(27) C(28) C(28) C(30) C(31) C(32)	$\begin{array}{c} 0.672(4)\\ 0.796(3)\\ 0.879(4)\\ 1.000(4)\\ 1.129(4)\\ 1.143(3)\\ 1.249(3)\\ 1.249(3)\\ 1.249(3)\\ 1.223(3)\\ 1.033(4)\\ 1.073(5)\\ 0.389(4)\\ 0.412(3)\\ 0.688(4)\\ 1.109(3)\\ 1.264(4)\\ 1.332(5)\\ \end{array}$	$\begin{array}{c} 1.014 \ (4) \\ 0.958 \ (4) \\ 1.362 \ (4) \\ 0.996 \ (3) \\ 0.944 \ (4) \\ 0.806 \ (4) \\ 0.806 \ (4) \\ 0.803 \ (4) \\ 0.902 \ (4) \ ($	$\begin{array}{c} 0.265(4)\\ 0.252(3)\\ 0.302(3)\\ 0.302(3)\\ 0.171(4)\\ 0.087(3)\\ -0.079(3)\\ -0.116(2)\\ -0.236(4)\\ 0.328(4)\\ 0.453(4)\\ 0.453(4)\\ 0.453(4)\\ 0.25(3)\\ -0.260(4)\\ 0.364(7)\\ 0.368(6)\\ \end{array}$	0.06(1) 0.04(1) 0.06(1) 0.07(1) 0.05(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1) 0.05(1)

U₁₁ U₂₂ U₃₃ U₁₂ U₁₃ U23 0.069(3) 0.044(3) 0.119(5) -0.040(3) 0.013(3) -0.034(4) Br

Table 1: Position and thermal parameters for thyrsiferyl acetate (1b)

References and Notes:

- D. J. Faulkner, <u>Tetrahedron</u>, <u>33</u>, 1421 (1977), W. Fenical, <u>J. Phycol</u>, <u>11</u>, 245 (1975) and references cited therein.
- 2. Collected at low tide on 2 February, 1975.
- Identified by glc retention time on DEGS and by gc/ms: 12:0, 14:0, 16:0, 16:1ω7, 18:0, 18:1ω9, 18:1ω10, 18:2ω6, 18:2ω3, 18:3ω3, 18:4ω3, 20:3ω9, 20:3ω6, 20:4ω6.
- 4. Identified on the basis of mp, mixed mp, ¹_H nmr, ¹³_C nmr, ms.
- 5. Pyridine/acetic anhydride (1:1).
- 6. AEI MS-902C, Varian-MAT CH-5.
- 7. Varian CFT-20. Spectrum acquired in CDCl₃, referenced to TMS at $\delta_{13_{cr}}$ 0.
- 8. Standard deviations for the last significant digit are given in parentheses.
- 9. Calculations were carried out on a Burroughs B6718 computer using local modifications of the well-known programs ORFLS and ORFFE (W. R. Busing, K. O. Martin and H. A. Levy) and FORDAP (A. Zalkin).
- 10. D. T. Cromer and J. B. Mann, Acta Cryst., A-29, 321, (1968).
- 11. D. T. Cromer, Acta Cryst., 18, 17 (1965).
- 12. Isotropic thermal parameters in \mathbb{A}^2 . Anisotropic parameters (U's), also in \mathbb{A}^2 , are coefficients in: $exp-2\pi^2(\underline{u_1}h^2\underline{a^{*2}} + \underline{u_{22}}k^2\underline{b^{*2}} + \underline{u_{33}}l^2\underline{c^{*2}} + 2\underline{u_{13}}hk\underline{a^{*}}\underline{b^{*}} + 2\underline{u_{13}}hl\underline{a^{*}}\underline{c^{*}} + 2\underline{u_{23}}kl\underline{b^{*}}\underline{c^{*}})$
- Test organisms used were: <u>Bacillus subtilis</u>, <u>Staphyloccus aureus</u>, <u>Pseudomonas aeruginosa</u>, <u>Aspergillus niger</u>, <u>Saccharomyces cerevisiae</u>.